A pertussis-toxin-sensitive protein controls exocytosis in chromaffin cells at a step distal to the generation of second messengers.
نویسندگان
چکیده
The role of GTP-binding proteins (G-proteins) in the secretory process in chromaffin cells was investigated by studying the effects of pertussis toxin (PTX) on catecholamine release and generation of various second messengers. PTX was found to stimulate the catecholamine secretion induced by nicotine, 59 mM-K+ or veratridine. PTX also potentiated Ca2(+)-evoked catecholamine release from permeabilized chromaffin cells, suggesting that PTX substrate(s) regulate the exocytotic machinery at a step distal to the rise in intracellular Ca2+. We have investigated the possible intracellular pathways involved in the stimulation of secretion by PTX. PTX did not modify the translocation of protein kinase C (PKC) to membranes in intact or permeabilized cells; in addition, neither inhibitors nor activators of PKC had any effect on catecholamine release induced by PTX. Thus it seems unlikely that the effect of PTX on secretion is mediated by activation of PKC. The effect of PTX is also cyclic AMP-independent, as PTX did not change cytoplasmic cyclic AMP levels. The relationship between PTX treatment and arachidonic acid release was also examined. We found that an increase in cytoplasmic arachidonic acid concentration enhanced Ca2(+)-evoked catecholamine release in permeabilized cells, but arachidonic acid did not mimic the effect of PTX on the Ca2(+)-dose-response curve for secretion. Furthermore, PTX did not significantly modify the release of arachidonic acid measured in resting or stimulated chromaffin cells, suggesting that the stimulatory effect of PTX on secretion is not mediated by an activation of phospholipase A2. Taken together, these results suggest that PTX may modulate the intracellular machinery of secretion at a step distal to the generation of second messengers. In alpha-toxin-permeabilized cells, full retention of the PTX-induced activation of secretion was observed even 30 min after permeabilization. In contrast, when chromaffin cells were permeabilized with streptolysin-O (SLO), there was a marked progressive loss of the PTX effect. We found that SLO caused the rapid leakage of three G-protein alpha-subunits which are specifically ADP-ribosylated by PTX. We propose that a PTX-sensitive G-protein may play an inhibitory role in the final stages of the Ca2(+)-evoked secretory process in chromaffin cells.
منابع مشابه
Exocytosis in chromaffin cells: evidence for a MgATP-independent step that requires a pertussis toxin-sensitive GTP-binding protein.
We have previously described that mastoparan, an amphiphilic tetradecapeptide that activates heterotrimeric G-proteins, inhibits Ca(2+)-induced MgATP-dependent secretion from streptolysin-O-permeabilized chromaffin cells [Vitale, Mukai, Rouot, Thiersé, Aunis and Bader (1993) J. Biol. Chem. 268, 14715-14723]. Our observations suggest the involvement of an inhibitory G(o)-protein, possibly locate...
متن کاملSomatostatin inhibition of Ca2(+)-induced insulin secretion in permeabilized HIT-T15 cells.
Somatostatin inhibited Ca2(+)-induced insulin secretion in permeabilized HIT-T15 cells, albeit with decreased sensitivity relative to intact cells. The inhibitory action required the presence of GTP, whereas GDP could not substitute for GTP. Pertussis-toxin treatment before cell permeabilization abolished the inhibition of secretion. Thus somatostatin, by activating a G-protein, interferes with...
متن کاملMolecular mechanisms and regulation of insulin exocytosis as a paradigm of endocrine secretion.
Secretion of the peptide hormone insulin from pancreatic beta cells constitutes an important step in the regulation of body homeostasis. Insulin is stored in large dense core vesicles and released by exocytosis, a multistage process involving transport of vesicles to the plasma membrane, their docking, priming and finally their fusion with the plasma membrane. Some of the protein components nec...
متن کاملBidirectional modulation of exocytosis by angiotensin II involves multiple G-protein-regulated transduction pathways in chromaffin cells.
Angiotensin II (AngII) receptors couple to a multitude of different types of G-proteins resulting in activation of numerous signaling pathways. In this study we examined the consequences of this promiscuous G-protein coupling on secretion. Chromaffin cells were voltage-clamped at -80 mV in perforated-patch configuration, and Ca(2+)-dependent exocytosis was evoked with brief voltage steps to +20...
متن کاملRegulation of calcium channels and exocytosis in mouse adrenal chromaffin cells by prostaglandin EP3 receptors.
Prostaglandin (PG) E(2) controls numerous physiological functions through a family of cognate G protein-coupled receptors (EP1-EP4). Targeting specific EP receptors might be therapeutically useful and reduce side effects associated with nonsteroidal anti-inflammatory drugs and selective cyclooxygenase-2 inhibitors that block prostanoid synthesis. Systemic immune challenge and inflammatory cytok...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Biochemical journal
دوره 274 ( Pt 2) شماره
صفحات -
تاریخ انتشار 1991